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What is genetic epidemiology?
Epidemiology is usually defined as “the study of the
distribution, determinants [and control] of health-
related states and events in populations”.1 By contrast,
genetic epidemiology means different things to
different people.2–7 We regard it as a discipline closely
allied to traditional epidemiology that focuses on the
familial, and in particular genetic, determinants of
disease and the joint effects of genes and non-genetic
determinants. Crucially, appropriate account is taken of
the biology that underlies the action of genes and the
known mechanisms of inheritance. The word
“appropriate” is crucial because the manner in which
biology is taken into account varies from setting to
setting and depends on the genetic information
available. With advances in technology and biological
knowledge, the work undertaken by those who
investigate the health consequences of genetic variants
continues to evolve.

Before information about DNA became available,
scientists trying to relate genetic variation to disease
relied on the fact that the mendelian laws of
inheritance8–11 implied a biological model for the pattern
of sharing of genes between close relatives. If knowledge
of this pattern could be supplemented by an assumed
model for the way in which a putatively causative genetic
variant might lead to disease (eg, two abnormal copies of
gene G are required to cause disease D), aetiological
inferences could be drawn from the distribution of
disease and phenotypic aggregation within large
families or across groups of families (segregation
analysis; see below). In time, more became known about
the human genome, and especially about genetic
markers, although they are not necessarily considered
responsible for determining health or disease. By
incorporating the biology of gamete formation and
chromosomal recombination into a mathematical model
of the extent to which a given marker tends to be
transmitted through a family in conjunction with a
disease, we can estimate whether a causative genetic
variant is likely to lie close to that marker and, if so, how

close. The marker and the causative variant need not be
within the same gene. This principle is the basis of
genetic linkage analysis (see a later paper in this series12),
which has achieved many of the breakthroughs in the
genetics of disease causation. Many such breakthroughs
involve conditions caused by variants in a single gene
and have been achieved by geneticists and clinical
geneticists who would not view themselves as genetic
epidemiologists. Nevertheless, linkage analysis is one of
the most important tools available to the genetic
epidemiologist.

Extensive information about the human genome can
now be included in genetic epidemiology studies. Once it
is known which two versions of a potentially causative
gene an individual possesses, looking for an association
between variants in that gene and the disease of interest
is fundamentally no different from an exploration of a
disease-exposure association in traditional epidemiology.
There is often no need to take particular note of the
underlying biological model, but this does not mean that
genetic epidemiologists can ignore biology. A recurring
theme of this series is that knowledge about the
underlying biology, coupled with the inferential tools of
modern epidemiology and biostatistics, allows important
aetiological questions to be answered in ways that are
more rigorous, and often more powerful, than
approaches that fail to make best use of both the
epidemiology and the genetics.

Although many of the greatest successes have been
with monogenic disorders,13 where familial recurrence
seems to follow the laws of mendelian inheritance,11,14

genetic epidemiology today is increasingly focusing on
complex diseases such as diabetes mellitus, ischaemic
heart disease, asthma, and cancer,13,15–20 which are
characteristically caused by several interacting genetic
and environmental determinants.14,21 This series aims to
illustrate the challenges that genetic epidemiologists
face and the methods they use in their collaborative work
with other scientists. 

We provide a framework for investigating the role of
genetic variation in complex diseases. Such a daunting
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Key concepts in genetic epidemiology
Paul R Burton, Martin D Tobin, John L Hopper

This article is the first in a series of seven that will provide an overview of central concepts and topical issues in

modern genetic epidemiology. In this article, we provide an overall framework for investigating the role of familial

factors, especially genetic determinants, in the causation of complex diseases such as diabetes. The discrete steps of

the framework to be outlined integrate the biological science underlying modern genetics and the population science

underpinning mainstream epidemiology. In keeping with the broad readership of The Lancet and the diverse

background of today’s genetic epidemiologists, we provide introductory sections to equip readers with basic concepts

and vocabulary. We anticipate that, depending on their professional background and specialist knowledge, some

readers will wish to skip some of this article.

Genetic marker
A genetic marker is a variable
DNA sequence that has a non-
variable component that is
sufficiently specific to localise it
to a single genomic locus and a
variable component that is
sufficiently heterogeneous to
identify differences between
individuals and between
homologous chromosomes in an
individual. Genetic markers have
a pivotal role in gene mapping.
Sequence variations at genetic
markers are not usually
functional. 
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investigation can be broken down into manageable steps
(figure 1). Figure 1 represents the template around
which the discussion in this article has logically been
structured. It is not a prescriptive statement about how
such research should be conducted. Genetic
epidemiological research does not have to be done this
way: historical evidence, ease of recruiting study
populations, and decreasing cost of genotyping are just
some of the reasons why one or more steps may be
omitted or taken in a different order. However, a proper
understanding of the logical basis of each step helps  to
decide when short cuts are reasonable.

Genetics for genetic epidemiology
The role of the underlying biological model in our
definition of genetic epidemiology means that some
understanding of basic genetics is required.22,23 Those
familiar with human genetics may wish to skip this
section.

DNA, RNA, and proteins
The human genome is made up of DNA, which
consists of a long sequence of nucleotide bases of four

types: adenine (A), cytosine (C), guanine (G), and
thymine (T). Strong covalent bonds bind bases
together along a single strand, and weaker hydrogen
bonds pair A with T and C with G between the two
strands. Each single strand has two different ends
called 5� and 3�, oriented in opposite directions. Under
native conditions, in the nucleus of a cell, DNA is
double stranded (figure 2). Double-stranded DNA is
replicated by breakage of the two strands and
construction of a new complementary strand for each,
resulting in two identical copies of the original. A
single strand of DNA can also act as a template for a
complementary strand of RNA. This transcription
RNA is similar to DNA, but T is replaced by U (uracil).
Crucially, in certain regions of the DNA, which can be
called genes, transcribed RNA encodes instructions
that tell the cell how to assemble aminoacids to make
proteins. Most genes contain alternating regions called
exons and introns. The RNA that is transcribed is
complementary to the whole gene (exons and introns).
Mature mRNA is then created by post-transcriptional
processing, which cuts out the introns and splices the
exonic elements to produce mRNA, which codes for a
protein. The production of protein via mRNA is called
translation. It is mainly through altered protein
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Figure 2: DNA structure (A), replication (B), and transcription (C)
A=base on newly synthesised strand.

Recurrence  risk ratios
Correlations

(1) Is there evidence of phenotypic
       aggregation within families?

Possibly consider
a new problem

No

Yes

Variance components
Heritability

(2) Is the pattern of aggregation 
       consistent with an effect of 
       genes? No

Yes

Segregation analysis (3) Is there evidence of a gene with a
       substantial enough effect to justify
       expensive studies to attempt to
       identify it?

No*

Yes

Linkage analysis (4) Where in the genome is a causative
       gene most likely to lie?

Association analysis
Linkage disequilibrium
mapping
Haplotype analysis

(5) Can we be more precise about
       its position?
       Is there a causative polymorphism?
       Is there an identifiable haplotype block? 

Gene expression
microarrays
Proteomics

(6) Does the polymorphism affect mRNA?
       In which tissues is mRNA expressed?
       Is there an effect on the protein product?

Figure 1: Framework outlining systematic approach to identification and characterisation of genetic
determinants of complex disease 
*It is probably illogical to stop trying to identify genetic determinants of disease simply because segregation
analysis fails to provide significant evidence of major gene.

Exon
A segment of a gene that is

represented in the mature RNA
product. Individual exons

typically include protein-coding
sequences.

Intron
Non-coding DNA that separates

neighbouring exons in a gene.

mRNA (messenger RNA) 
RNA transcribed from genes

undergoes posttranscriptional
processing and the resultant
mature mRNA is used as the
template for the translation

process that results in synthesis
of a protein.
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function that changes in the DNA sequence affect
health and disease.

Human genome and variation in DNA sequence
The complete DNA sequence is the human genome, and
the repertoire of proteins is the proteome. The haploid
genome is about 3·3 billion bp. Some 3% of the genome
consists of coding sequences,23 and there are
30 000–40 000 protein-coding genes.24–26 99·9% of the
genome of any two unrelated individuals is identical, but
the DNA sequence may vary between two versions of the
same chromosome in several ways.

Many different types of DNA sequence variant exist,
and they can be classified in different ways23—eg, by the
physical nature of the sequence variation, by the effect
on protein formation, and by the associated
susceptibility to a disease. The two most important
structural classes are microsatellites and single nucleotide
polymorphisms (SNPs). Alleles are differentiated by the
number of repeats (eg, CA12 indicates 12 CA repeats in a
row). Microsatellites are highly variable and most people
are heterozygous at any given locus. Coding regions tend
not to contain microsatellite sequences. SNPs, by
contrast, represent variation in a single nucleotide. As of

July, 2005, the number of known SNPs (with a unique
position) in the human genome exceeded 10 million,
and more than half these had been independently
validated. Although individual SNPs might carry
limited information, their ease of typing and large
number means that they are widely used in genetic
epidemiology.26

SNPs in protein-coding regions are non-synonymous
or synonymous, depending on whether they do or do not
modify the aminoacid sequence in the gene product.
Non-synonymous SNPs can also be called coding SNPs.26

Intronic and intergenic SNPs lie in the non-coding
regions. A non-synonymous SNP in a coding sequence
is generally more likely than other classes of SNP to
affect the function or availability of a protein.26 However,
all types of SNP can cause disease, for example by
altering the regulation of transcription of a critical
protein. The true distribution of disease-associated
variants between non-coding and coding sequences is
unknown.26

Chromosomes, gamete formation, and recombination
The human genome is distributed among 46 chromo-
somes, 22 homologous pairs of autosomes and one pair
of sex chromosomes. The complete set is the diploid
complement. One chromosome in each of the 22
homologous pairs is derived from the mother and one
from the father, and the two homologues will have the
same sequence of genes in the same positions, but they
will usually exhibit sequence variations at several loci
and can therefore be distinguished.

The cell division and accompanying replication and
partitioning of DNA that leads to the formation of
sperm and ova is meiosis.23 Each gamete receives (at
random) one member of each homologous
chromosomal pair.

It might seem that there is a 50% probability that any
given gamete receives one chromosome rather than the
other from a particular homologous pair, and that there
are 2 to the power of 23 distinct gametes that any given
individual might produce. Crucially, however, this is
not the whole story. At gamete formation, the choice is
not between the whole of one chromosome or the
whole of the other. Instead, the gamete receives a
mixture of the two homologous chromosomes because
of crossover events (figure 3). Crossovers can split
alleles that lie together on a common parental
chromosome and can result in alleles that originally
came from different grandparents being on the same
chromosome. 

Gene mapping makes use of recombination. The
further apart two genes are, the higher the probability of
an odd number of crossovers (odd numbers cause
recombination), to a maximum of 50%. The
recombination fraction (the proportion of meioses that
result in a recombination) is an indication of how far
apart two genes are. This fraction can be mathematically
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Haploid
Gametes (sperm and ova) are
haploid. They contain only one
member of each homologous
chromosomal pair (for example,
only one version of chromosome
14). All ova have chromosomal
complement 23,X and sperm are
either 23,X or 23,Y. When sperm
and ova fuse to form a zygote,
the diploid chromosomal
complement is restored. 

Microsatellite
Microsatellites consist of multiple
repeats of a short sequence
(typically 2–8 bp) such as:
CACACA . . . . The alleles of a
microsatellite are differentiated
by the number of repeats they
involve (eg, CA12 would denote
12 CA repeats in a row).

Polymorphism
Implies genetic variation at a
designated locus. A locus that is
polymorphic has at least two
alternative alleles. Unfortunately,
polymorphism has alternative,
more specific definitions (none
universally accepted), an
important example being “the
existence of two or more genetic
variants (alleles, [other] sequence
variants, chromosomal structure
variants) at significant
frequencies in the population.”22

In this series, polymorphism is
used either as a component of
the term single nucleotide
polymorphism (see below) or it
refers simply to a locus at which
genetic variation is evident.
Unless stated otherwise, its
usage implies nothing about the
type of variation observed or its
frequency.

Single nucleotide
polymorphism (SNP)
A DNA variant that represents
variation in a single base. A
common SNP can be defined as a
locus at which two SNP alleles
are present, both at a frequency
of 1% or more.109 Across the
human genome there could be
10 million common SNPs.109

Allele
If the DNA sequence at a given
locus (often a gene or a marker)
varies between different
chromosomes in the population,
each different version is an allele.
If there are two alleles at a given
locus, the allele that is less
common in the population is the
minor allele.

0%

Crossovers

20% U1
23%

30%

59%

100%

U3

V7 V4

U1

V4

U3

V7

U3

V7

14PAT 14MAT After crossing over Chromosome 14 
transmitted to sperm

Figure 3: Crossing over and recombination
Two hypothetical loci, U and V, are sited 20% and 30%, respectively, along the
length of chromosome 14. They existed as alleles U1 and V7 on chromosome
14PAT (the chromosome derived originally from the man’s father) and alleles U3

and V4 on chromosome 14MAT (the chromosome derived originally from the
man’s mother). Crossovers at 23% and 59% along the chromosome produce
two mixed chromosomes. In this example, the right-hand chromosome is
transmitted to the gamete, containing alleles U3 and V7. These two alleles were
independently derived from the man’s mother and the man’s father,
respectively.

See http://www.ncbi.nlm.nih.
gov/SNP/snp_summary.cgi



Series

transformed into an expected number of crossover
events. Distance along a chromosome can be expressed
in centimorgans. The relation between the length of
DNA as measured in bp or centimorgans varies between
men and women and from place to place in the genome,
but a rule of thumb is that 1 centimorgan corresponds to
about 1 billion bases.27

Genotypes, haplotypes, and phenotypes
Although the genotype is sometimes used to refer to the
overall genetic constitution of an individual,23 genetic
epidemiologists use the term to refer to a particular
locus. If three loci—U, V, and W—lie on a given
chromosome and we take alleles U3, V2, W2 along one
homologous chromosome and U1, V2, W1 along the
other, the genotypes of the individual at the three loci are
U1U3, V2V2, and W1W2. Expressed in this manner, a
genotype has no natural order and the genotypes would
have been the same if the two chromosomes had carried
U1,V2,W2, and U3,V2,W1. The allelic configuration along a
single chromosome is called a haplotype and the
haplotypes do differ between these two scenarios. The
haplotype information in a parent is also known as the
phase of that parent’s meioses.27

Throughout this series, phenotype will be used
interchangeably with trait to refer to a measurable
characteristic of an individual that is not itself a
genotype.23 This definition includes binary disease states
(presence or absence of asthma) and quantitative
characteristics (systolic blood pressure). Some simple
binary phenotypes are only present (or expressed) if
there are two copies of an abnormal allele, in which case
the allele is recessive. If an abnormal phenotype can be
expressed in full with just one copy, the abnormal allele
is dominant. An intermediate state often exists
(penetrance). If penetrance in a heterozygote lies
between the penetrance of the two corresponding
homozygotes, this gene is codominant. If expression
depends on age, penetrance can be modelled in terms of
differing distributions of the age-at-onset by genotype.
These concepts all extend to traits defined on fully
quantitative or ordinal scales. 

Fusion of genetics and epidemiology
The fusion of epidemiology and genetics provides the
foundation for genetic epidemiology22,28,29 (figure 1). We
focus on assessment of indirect evidence for a genetic
contribution to disease causation through the study of
familial aggregation and segregation analysis, because
these topics are not covered in detail elsewhere in the
series. 

Phenotypic aggregation within families
It is important to distinguish between the clinical sense
of familial clustering (extended families that happen to
have multiple cases of a disease or syndrome of interest)
and the epidemiological sense of familial aggregation

(there is, on average, a greater frequency of disease in
close relatives of individuals with the disease than in
relatives of individuals without the disease). Simple
analyses of familial aggregation treat the family like any
other unit of clustering. In addressing whether there is
phenotypic aggregation within families, no attempt is
made to determine the cause of any aggregation.

Binary traits
If the phenotype is a binary trait, familial aggregation is
often assessed by the recurrence risk ratio30 or allied
measure.31 The pattern of recurrence risk ratios across
different types of relatives can provide valuable
information about the origin of a binary trait,30 and can
inform the statistical power of linkage studies.15 The
recurrence risk ratio is a ratio of prevalences—“the
proportion of a population that has a [particular] disease
at a specific point in time”.32 The recurrence risk ratio
(�R) in relatives of type R is the prevalence of the disease
in relatives of type R of affected cases (PR) divided by the
prevalence in the general population (P). If the relatives
are siblings, �S and PS would be used. P and PR will
almost always be estimates, so � will be an estimate too.

Prevalence is difficult to estimate. First, the disease
(phenotype) must be assessed carefully, taking into
account issues such as disease definition, age at onset
and duration.33 Second, the study sample must be
representative of the target population, to avoid
systematic overrecruitment or underrecruitment of
those with disease. It can be necessary to invest
substantial resources to ensure a high response rate to
guard against such biases.

In genetic epidemiology, as in mainstream
epidemiology, it is often difficult to obtain a
representative or random sample of the general
population that is large enough to ensure adequate
statistical power. Consequently, families are often
recruited precisely because they have affected
members. This outcome-based sampling is often more
informative and increases power. Furthermore, it has
obvious benefits for a study aimed at estimating �R, the
prevalence of disease in a particular subgroup of
relatives. However, because the familial determinants
of the trait of interest are usually unobserved in a study
of familial aggregation, this sampling method can lead
to severe ascertainment bias. Furthermore, the data to
estimate PR can come in many different forms.34 The
consequences of non-random sampling must be
considered carefully, and any ascertainment bias
should be dealt with in the analysis.34–44 If necessary,
expert advice should be sought. These are not trivial
issues. The same concerns apply equally well to other
measures of familial aggregation and to the
investigation of the pattern of aggregation within
families.36–39,43,44

Three interpretational issues warrant emphasis. First,
the prevalence of many complex diseases increases

Locus

A locus is a unique chromosomal

location defining the position of

an individual gene or DNA

sequence. In genetic linkage

studies, the term can also refer to

a region involving one or more

genes, perhaps including non-

coding parts of the DNA.

Non-synonymous SNPs

An SNP that alters the DNA

sequence in a coding region such

that the aminoacid coding is

changed. The new code specifies

an alternative aminoacid or

changes the code for an

aminoacid to that for a stop

translation signal or vice versa.

Synonymous SNPs alter the DNA

sequence but do not change the

protein coding sequence as

interpreted at translation, because

of redundancy in the genetic

code: several different codes can

specify the same aminoacid. Non-

synonymous SNPs can also be

called coding SNPs.

Diploid

Most human cells are diploid,

containing all 46 chromosomes:

one copy of both members of

each homologous pair (eg, two

versions of chromosome 14).

The full diploid human

chromosome complement can

be expressed as 46,XX in a

woman and 46,XY in a man.

Centimorgan

1 centimorgan (cM) corresponds

to a region within which a

crossover is expected once every

100 meioses. This implies a 1%

chance of a single crossover at a

single meiosis, and because the

probability of a double crossover

is exceedingly small (about

0·01%), this also corresponds to

a chance of roughly 1% of

recombination at each meiosis.

Haplotype

A series of alleles at linked loci

along a single chromosome.

Phase

Denotes the haplotypic

configuration of linked loci. The

diplotype U1U3–V1V2 is consistent

with two possible phases: (1)

U1–V1 on one chromosome and

U3–V2 on the other; or (2) U1–V2

on one chromosome and U3–V1

on the other. If a child receives

U1–V1 on a paternally derived

chromosome from a father with

diplotype U1U3–V1V2 it either

implies that the father was in

phase (1) and no recombination

has occurred, or he was in phase

(2) and there has been

recombination. 
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steeply with age, whereas � often declines.45 Careful
attention must therefore be paid to the age distributions
of both the general population sample and the relatives
and, at the very least, adjustments must be made for any
differences between the two. Second, if a phenotype is
common (eg, P=0·5, as it roughly is for some measures
of skin-prick sensitivity to common allergens46), �R

cannot be greater than 2·0, even if every available
relative is affected. Comparisons of �R across different
diseases or different settings thus require care. Third, �R

measures the combined effect of all causes of familial
aggregation, not just the effect of genes. In some
settings (and in a later paper in this series47), the term
familial relative risk is used instead of �.48

Quantitative traits
Assessment of familial aggregation of a continuous trait,
such as (untreated) blood pressure, is most commonly
undertaken with a correlation or covariance-based
measure such as the intrafamily correlation coefficient
(ICC). This approach dates back more than a century to
Galton49,50 and Pearson.51 The ICC indicates the
proportion of the total variability in a phenotype that can
reasonably be attributed to real variability between
families.52 Thus, the assessment of aggregation of a
continuous measure in genetic epidemiology is
fundamentally no different from, and could be viewed as
predating,10,50 analogous problems in traditional
epidemiology and social science.52,53 Consequently,
techniques such as linear regression and mulitilevel
modelling analysis of variance52–58 can be imported
directly into genetic epidemiology. As with the binary
phenotype, non-random ascertainment can seriously
bias an ICC.42

Interpretation
For many complex diseases, the average �R in first-degree
relatives is around 2.45 It tends to be greater the younger
the age at onset in the affected individual,45 to fall as the
familial relationship becomes more distant,30 and to
increase as the number of affected relatives of the at-risk
individual rises. Although a �R of 2 might appear modest,
it does suggest that uncovering all sources of familial
aggregation might well be worthwhile. A moderate �R

generally implies the presence of underlying familial risk
factors (genetic or non-genetic) that are at least an order
of magnitude stronger than �R itself.59,60 This effect
strengthens with the rarity of the determinant in
question. For example, dominant alleles in the BRCA1
gene affect about 1 in 500 women, and result in a ten to
20-fold increase in the risk of breast cancer. But this
increase only slightly raises the risk of disease in first-
degree relatives across the population (�R is about 1·1). A
value of �R of around 2 would also be consistent with a
number of common alleles each associated with a more
modest relative risk. Knowing �R alone does not tell us
which genetic or familial model is most likely.

Because a simple assessment of familial aggregation
takes no account of the underlying biology, one should
not assume that evidence of familial aggregation implies
genetic effects. For many complex diseases, the non-
genetic risk factors identified to date have a modest
effect and are weakly correlated in relatives. They
therefore seem to explain little familial aggregation. For
example, known risk factors such as parity, age at
menarche, age at menopause, and body-mass index
explain less than 5% of the enhanced risk of breast
cancer in first-degree relatives of affected people.60 But
such determinants are probably just surrogates for
aetiologically stronger factors that are as yet beyond the
reach of epidemiology. They are typically measured by
questionnaire and can be subject to substantial
measurement error. Such errors attenuate both their
apparent effect on risk and their estimated correlation
between relatives. Consequently, the non-genetic
contribution to familial aggregation might be greatly
understated: this point is often overlooked.

Explanation for the pattern of aggregation
Variance components modelling
To estimate the extent to which any familial aggregation
identified is caused by genes, we need a biologically
rational model that specifies how a phenotype of interest
might be modulated by the effect of one or more genes.
One of the most common is the additive genetic effects
model (panel 1).10,61,62 The model needs to incorporate
some measure of the extent to which different classes of
relatives have different probabilities of sharing alleles
that are identical by descent (panel 2). With both these
elements it is possible to quantify, by hierarchical
variance components modelling for example,55,57,61,62 the
extent to which genetic variability might be consistent

Penetrance
The probability that a particular
phenotype is expressed in a
person with a particular
genotype.
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Panel 1: Additive genetic effects

One of the simplest paradigms for the effect of genes on a
continuous complex trait is the additive genetic effects
model.10,29,61,62,63,65 There are assumed to be an unspecified
number of genes that influence the trait, each with an
unspecified number of alleles. The model implies that a given
allele at a given locus adds a constant to, or subtracts a
constant from, the expected value of the trait. The amount
added or subtracted varies in an unknown way from allele to
allele and from locus to locus. For example, suppose gene G
had four alleles: G1 adds 3 to the trait; G2 adds 6; G3

subtracts 2; and G4 adds 1. The contribution of G to the
expected value of the trait in an individual who is, for example,
G1G2 is +9.The effect that any one allele exerts is assumed to be
the same regardless of which allele it is paired with. Unless
there is a marked departure from this assumption (eg, G1 adds
6 if paired with G2 but subtracts 3 if paired with G3) the additive
model will usually capture much of the aetiological
information that can reasonably be explained by genes.
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with the familial patterns of variability in the phenotype.
Other genetic and non-genetic models might also be
consistent with the data, so a good fit of any one model
does not prove that that model is right.

This approach can be extended to include the
covariance or correlation patterns (or both) that would be
expected for other more complex models of genetic
determination; for example, by including genetic
dominance (see a later paper in this series64) in addition
to additive genetic effects.10,55,61–63,65 One can also allow for
correlation or covariance patterns due to unmeasured
environmental determinants that are shared by a whole
family, those that are shared just by siblings, and those
which wax and wane as individuals spend time living
together or living apart.29,55,57,61–63 Finally, many
environmental and lifestyle exposures are unique to an
individual. These unshared determinants contribute
nothing to the tendency for relatives to be more similar
than non-relatives (ie, they do not contribute to the
covariance between relatives), but they do affect the total
variability of a quantitative trait. Many methodological
developments in this area come from work on the
analysis of twin studies.55,66,–68

Crucially—and this point is often misunderstood—
variance components analyses require no information
about genotypes or measured environmental
determinants. No blood needs to be taken for DNA
analysis. However, if information is available about

specific genes and environmental determinants, it can
be added to the analysis. Panel 3 gives pointers to types
of variance component modelling most commonly used
in genetic epidemiology. 

Heritability
One of the principal reasons for fitting a variance
components model is to estimate the variance
attributable to additive genetic effects. This quantity (S2

A)
represents that component of the total phenotypic
variance (S2

T), usually after adjustment for measured
genetic and non-genetic determinants, that can be
attributed to unmeasured additive genetic effects
(panel 1). Heritability in the narrow sense is defined as
S2

A divided by S2
T. Particular family studies, especially

those including monozygous twins, also allow
estimation of S2

G, the phenotypic variance attributable to
all genetic effects, including non-additive effects at
individual loci and between loci (see a later paper in this
series64). Heritability in the broad sense is defined as S2

G

divided by S2
T.

Heritability is a beguiling concept but is open to
misinterpretation. It is not about cause in itself, but
about the causes of variation in a particular trait in a
particular population at a particular time.10,29,77 Fisher78

pointed out that although the numerator has a simple
genetic meaning, the “hotch-potch of a denominator”
does not.78 S2

T conflates the variance attributable to genes
and to shared environment and residual variance
attributable to unshared and unmeasured determinants
and to measurement error. In consequence, heritability
for a given phenotype can vary quite substantially from
setting to setting, and even within a given setting.7,77

Heritability is formally defined for quantitative traits.77

For binary traits, it is usually calculated by invoking a
hypothetical construct known as liability, and applying a
version of variance components modelling. Liability is
an underlying, unobservable, normally-distributed trait
that is assumed to determine the probability that an
individual develops the disease of interest.62,74,77,79

Unfortunately, with a binary phenotype, the heritability
of the liability does not have a clear meaning and is
prone to confused interpretation.45,80–83

Some scientists and the media treat heritability as
meaning the extent to which a trait is caused by genetic
factors. This view is incorrect. If a trait is dependent upon
a particular allele for which everybody is homozygous,
variation at that locus will play no part in determining the
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Panel 2: Identity by descent and identity by state 

If two parents both of genotype G1G2 have two children who
are also G1G2, these offspring could have received their G1 from
the same parent (case A) or one from either (case B). If the G1

alleles are from different parents then so are the G2 alleles. 
Any two individuals with genotypes G1G2 are said to share
two alleles that are identical by state (IBS), irrespective of the
origin of the two alleles and irrespective of whether the two
individuals are related. An allele is identical by descent (IBD)
only if it has been inherited directly from a common ancestor
(which could be one of the two individuals themselves).
Thus, the siblings in case A share 2 alleles IBD, and those in
case B share no alleles IBD. Excess sharing of IBD alleles
differentiates relatives from non-relatives, and this sharing is
generally most important in genetic epidemiology. The table
illustrates the patterns of IBD sharing between relatives. 

Parents Parent–child Full siblings Grandparent–grandchild Uncle–niece First cousins Half siblings Identical twins

IBD sharing at a single locus
Expected probability 2 alleles shared IBD 0 0 0·25 0 0 0 0 1
Expected probability 1 allele shared IBD 0 1 0·5 0·5 0·5 0·25 0·5 0
Expected probability 0 alleles shared IBD 1 0 0·25 0·5 0·5 0·75 0·5 0
Proportion of alleles shared IBD Exactly 0 Exactly 0·5 On average 0·5 On average 0·25 On average 0·25 On average 0·125 On average 0·25 Exactly 1

Table: Characteristic IBD sharing for different categories of relative on the assumption that parents are unrelated 
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variance of the trait, and will not contribute to heritability.
A near-ubiquitous environmental exposure will also
make little or no contribution to the denominator, S2

T.
Interpretation also depends on which covariates are
included. For example, including an important
environmental covariate might well decrease S2

T, but
leave S2

A unchanged, which will apparently increase the
heritability in the narrow sense. For these reasons, it is
often preferable to quote the magnitude of the variance
components (such as S2

A) individually.68,78,84

If there are so many pitfalls in the interpretation of
heritability, why calculate it? The power of most studies
to discover genes is positively associated with the
heritability of the trait of interest; so, all else being equal
and if the option exists, analytical efficiency can be
enhanced by selecting a study population in which the
heritability of the trait of interest is believed to be high.
Furthermore, subject to all the caveats, knowledge that a
trait of interest has high heritability can support a study
that proposes to investigate the genetic determinants of
that trait. Equally, if heritability is low, those
contemplating doing or funding the study are
forewarned that genetic effects might be difficult to find.
In either case, interpretation demands expert
understanding of the nature of the trait.

Justification for expensive studies
Is there evidence of one or a few genes with substantial
enough effect to justify expensive studies? This question
falls under the scope of segregation analysis.29,85,86 Are
there one or more major genes (ie, genetic variants that
have a strong effect on susceptibility, however rare they
may be) whose mendelian segregation within families
explains all or part of the observed familial aggregation
of the trait of interest? This information may be useful in
its own right,87 and it could also be used to generate
estimates for a parametric linkage analysis88 (see a later
paper in this series12).

Elston89 defines segregation analysis as: “the statistical
methodology used to determine from family data the
mode of inheritance of a particular phenotype, especially
with a view to elucidating [major] gene effects”. Although
computationally demanding, it is now possible to fit
models (to estimate allele frequencies and risk functions)
that include more than one mode of inheritance,
providing the family structures have sufficient
information (eg, Cui and colleagues’ work on breast
cancer genetics90). Like variance components analysis,
classical segregation analysis has no requirement for
observed genotypes. It can be viewed as a special case of
the investigation of familial aggregation, often focusing
on the pattern of aggregation within individual families
rather than averaging across the population. The results
of a segregation analysis can be very sensitive to
inappropriate adjustment for ascertainment.38

How substantial the effect of major genes must be
before they are deemed worthy of biological

investigation depends on many factors. These include
the prevalence of the deleterious variant(s), the
prevalence and natural history of the disease they might
cause, and the strengths of other genetic and
environmental influences on the same disease.
Furthermore, account can also be taken of the potential
usefulness of information about the cause of disease that
might come from identifying a particular genetic variant
as being related to the disease. These important issues
will be discussed in a later paper in this series.91 Whether
a particular segregation analysis can detect a major gene
effect or not also depends on other factors, including the
quantity and quality of the family data that are available.
In light of all of these uncertainties, it seems irrational
not to progress with further investigation of a putative
gene effect simply because a segregation analysis has
failed to provide evidence for a major gene (figure 1).

Segregation analyses have been used less often since
the revolution in DNA technology. This decline is partly
due to concurrent increases in computational power so
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Panel 4: A simple association analysis

The simplest class of association analysis involves a binary disease trait and a functional
gene with two alleles, and requires an adequate number of unrelated individuals to have
been typed for the gene of interest and classed as having, or not having, the disease. The
simplest approach is to construct a 2�3 table:

G1G1 G1G2 G2G2

Disease 109 118 26
No disease 138 88 21

We focus on analyses based on the distribution of genotypes by disease status . A
conventional �2 test (with 2 degrees of freedom) takes the value 8·23 (p=0·016) implying
significant heterogeneity in the risk of disease associated with the three genotypes. �2 test
for linear trend is 6·23 (p=0·013). Logistic regression suggests that, on average, each
additional copy of G2 increases the odds of disease by a factor of 1·41 (95% CI 1·07–1·85).
How these results are interpreted depends critically upon whether this is a one-off test on
a single candidate gene (when the analysis can be interpreted at face value), or whether
this is merely one marker gene among many tested, so demanding adjustment for
multiple testing and the very low a-priori probability that a given locus is truly associated
with the disease (see a later paper in this series64).16–19

Panel 3: Fitting of variance components models

Variance components analysis can be undertaken with conventional statistical models
such as maximum likelihood65 and generalised least squares,55 or Markov chain Monte
Carlo based approaches.57 Genetic epidemiologists use various approaches to aid the
specification of such models, including path analysis, which was invented by Sewall
Wright nearly 100 years ago69 and the fitting is achieved by various programs;54,55,61,70–73 the
details are beyond the scope of this article but a key feature is flexibility. So, if information
is available about characterised genotypes, measured environmental determinants, and
known demographics, it can enter the analysis. Equivalent approaches can also be used
for binary phenotypes55,57,74 and for traits that can best be expressed as a survival time,75,76

such as age at onset or age at death.



Series

that one can now handle complex parametric linkage
models (see a later paper in this series12). Furthermore,
linkage analyses for complex diseases are now often based
on non-parametric methods (see a later paper in this
series12) so that parameter estimates from segregation
analyses are no longer needed. Segregation analysis might
come back into favour when the more common major
genes are identified, to inform strategies for detection of
secondary genetic determinants of disease.

Location of a causative gene
Having obtained evidence of a likely genetic component in
the cause of a complex disease (without genotyping
genes), the next step is to locate and identify any causative
genes. One option is to move straight to the obvious
candidates (see section on association analysis), but for
most complex diseases there are so many candidates and
so many genes whose usual effects are completely
unknown (let alone their effects when they carry sequence
variants) that candidate gene work is often preceded or
accompanied by an attempt to localise regions of the
genome that are aetiologically relevant.

Major genes for monogenic conditions have been
located by linkage analysis,13 but there have been far fewer
successes with complex diseases.92,93 This is mainly
because of limitations to statistical power (see a later paper
in this series12). For example, most true effect sizes tend to
be small when averaged across the population, complex
phenotypes are often multidimensional and subject to
substantial measurement error, there is marked
aetiological heterogeneity, and the measurable predictor
variables might not be strongly associated with the actual
causative agent(s).

Genetic linkage analysis12 is perhaps the best example of
a common investigative approach in genetic epidemiology
that derives almost entirely from a consideration of the
underlying genetics. There is no precise analogue in

traditional behavioural and environmental epidemiology,
although there are parallels in other specialised fields of
epidemiology that must also incorporate a biological
model, for example in infectious disease epidemiology.
Genetic linkage analysis88,94–96 relies entirely on the
tendency for shorter haplotypes to be passed on to the next
generation intact, without recombination events at
meiosis. If a marker can be identified that is passed down
through a family such that it consistently accompanies the
disease of interest, this suggests a gene with a functional
effect that is located close to that marker.

This focus on the underlying biology should not obscure
the importance of clinical knowledge accrued over many
years: identification of familial syndromes has been
crucial in the success of linkage studies of complex
disease. The reason is that one is often attempting to
reduce the complex disease to one of its monogenic forms.
An example is the syndrome of bowel cancer that led to
the identification of the cancer-predisposing role of
mutations in DNA mismatch repair genes.97–99 This
disease was historically referred to as hereditary non-
polyposis colorectal cancer or Lynch syndrome.100 Other
examples are familial breast-ovary syndrome (BRCA1)101

and the female and male breast cancer syndrome
(BRCA2).102

Association analysis
Traditional epidemiology often asks whether it can be
proved that, across a study population as a whole,
measured environmental exposure E is consistently
associated with observed disease D. Association analysis
in genetic epidemiology asks the same question of genetic
exposures. This approach can be seen as traditional
epidemiology applied to genotypes or alleles across a
population (panel 4), and many of the analytical
approaches used in epidemiology and medical statistics
can be applied directly to association analyses in genetic
epidemiology. These include univariate methods and
regression analysis.58.103,104 Furthermore, the approaches
outlined above and in panel 3 can be extended to deal with
data that have a complex correlation structure including:
family data; longitudinal data; data naturally subject to
geographical or temporal clustering; and/or data collected
under a multistage sampling scheme and applied to
phenotypes in various classes, including binary traits,
continuous normally distributed traits, and time to event
(survival time).54.55.75

Association analysis is covered in later papers in this
series,64,105,106 so we will limit ourselves to a few comments.
A test of association can be informative even when based
on genetic variants that are not functional. It can also be
useful to detect linkage disequilibrium (panel 5) between a
disease and a non-functional marker.20,107,108 An association
analysis based on a putative functional genetic variant can
be called direct and one based on linkage disequilibrium
with a marker indirect..64,105,106 Indirect association analysis
allows finer mapping than conventional linkage analysis.
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Panel 5: Linkage disequilibrium vs simple linkage

A functional gene (D) which affects a binary disease trait lies 0·01 cM away from a known
marker. Suppose that, 2000 generations ago, a new, deleterious mutation (D*) appeared in
a single individual on a chromosome that happened to carry the allele M17 at the marker.
Any individual who carries D* today will have inherited the relevant part of the original
disease-bearing chromosome via an inheritance pathway that will have involved 2000
meioses. For the given distance between marker and disease gene, the probability of a
crossover at any one meiosis will be 0·0001, and the probability of no crossovers in any of
the 2000 meioses will be (1–0·0001)2000 (ie, 0·82). This could well allow detection of a
population-wide association between the disease and M17 even though M17 has nothing to
do with the cause of the disease. This is linkage disequilibrium (see Cordell and Clayton64). 
Linkage disequilibrium implies linkage that is so tight that it leads to an association at the
population level, unlike simple linkage where the two loci tend to be further apart and the
chance of recombination at any single meiosis is greater. Here, a disease-causing variant
might be closely associated with marker allele M3 in one family but equally closely with M8

in another. The within-family associations over a few generations are strong and
consistent, but there is no systematic association across the population as a whole. 
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The International HapMap Project seeks to map out
regions of linkage disequilibrium and “develop a
haplotype map of the human genome”.109 One exciting
opportunity is the potential for whole genome scans based
on indirect association rather than linkage analysis;
however, there are still many challenges.26

A potential problem for association studies using
unrelated cases and controls is ethnic stratification, which
can mimic the signal of association and lead to more false
positive results or to missed real effects.107,110,111 This
problem has been put forward as one explanation for the
repeated failure to replicate positive findings in genetic
epidemiology.112,113 The effect of population stratification
on the results of association analyses are potentially more
severe when small effects are studied in very large
studies.111 This result has important implications for
national biobanks and large case-control initiatives. This
concern is the subject of much debate and study at a
national level in the UK.111–115

Addressing population stratification demands an
understanding of both the underlying biology and the
relevant epidemiology.91,111,116–119 Approaches to dealing
with such stratification will be discussed in detail later in
the series.64

Gene expression and gene product function
The identification of genes that might be implicated in
complex diseases only partly explains the biological
pathways that lead to disease. The fuller picture requires
knowledge of gene expression and gene product function,
and the place of DNA, RNA, and proteins in the living
environment of an integrated organism. Such research is
underway, but the issues are very different from those
that form the primary focus of this series. Its importance
is acknowledged by step 6 in figure 1, and some of the
issues will be touched upon in a later paper.106

Where do we go from here?
For reasons mainly of statistical power and recruitment of
large samples, genetic epidemiology is moving away from
linkage studies based on families to allelic association
studies based on unrelated individuals.20,26 This move is
not without its critics,120 and a later paper in this series47

will look at the future role of population-based family
studies and the need to ensure that important
opportunities are not missed.121

One serious problem facing mainstream epidemiology
is that residual confounding by unobserved covariates
could be strong enough to swamp the small aetiological
effects now being sought.122,123 The distribution of alleles at
any given locus tends not to be correlated either with
environmental exposures or with the distribution of
alleles at other loci (except those few in tight linkage
disequilibrium). Therefore, the biology underpinning
genetic epidemiology offers a potentially useful way to
study environmental determinants in disease without
residual confounding. This approach, often called

mendelian randomisation,124–128 will be considered in a
later paper.91

Studies involving at least 5000 cases are now being
discussed as an essential element of biomedical research.
Such research will involve huge national and
international investment and incur important opportunity
costs. As a result, scientific debate, particularly about
study design, can be heated. Even within the contributors
to this Lancet series there is disagreement about key issues
such as the role of large national cohort studies.126,129 This
important debate will be covered in a later paper in this
series.91
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